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Abstract

The research was a probabilistic study of neural network models. It was not
oriented toward the workings of a particular device, but was intended to pro-
vide an understanding of the basic mechanisms of learning and recognition
in neural retworks. The main areas of progress were analysis of neural net-
work models, study of network connectivity, and investigation of computer
network theory.
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1 Introduction

The research dealt with probabilistic analysis of neural networks. The prin-
cipal investigators were William G. Faris and Charles M. Newman. Robert
S. Maier also participated in the project.

The analysis was intended to provide an understanding of the basic mech-
anisms of the elementary components of neural network recognition and
memory devices. The research was less concerned with building practical
devices than with a mathematical analysis of the basic phenomena. However
the analyses will eventually be useful in understanding the components of
much more complicated realistic devices.

There were three main components of research:

* Neural Network Models

* Network Connectivity

* Computer Networks

These components are explained in the following sections.

2 Neural Network Models

2.1 Reliability of neural nctworks

The concept of a set of associated random variables provides a nonlinear gen-
eralization of the notion of a set of positively correlated random variables.
This concept is useful in analyzing the reliability of neural network associa-
tive memory devices. In particular, it allows estimates of the probability of
successful retrieval of individual bits in a memorized pattern to be extended
to a lower bound on the probability of error-free retrieval of the pattern as a
whole [1].

There are a number of standard neural network models of memory in
which associations are stored in connections between nodes. In order to
analyze the problem of when such a memory device can function reliably
and when it becomes overloaded, it is useful to treat the memorized items as
random. However when this is done, the presence or absence of the various
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possible connections are not independent random events. A rigorous analysis
must use some concept that goes beyond independence.

The not;on of associated random variables is one such tool. A set of
associated random variables has the property that every pair of variables is
positively correlated. However the notion is stronger, since the same property
also holds for certain nonlinear functions of all the variables. Many of the
properties of independent random variables hold for associated random vari-
ables, notably the central limit theorem. (Another terminology has arisen in
statistical mechanics; associated random variables are said to obey the FKG
inequalities.)

The model is an m-by-n matrix of connections in which pairs of patterns,
are stored, and from which an output pattern may be retrieved upon presen-
tation of the corresponding input pattern. Each input pattern is a random
pattern of n O's and l's, the probability of a 1 being p. Similarly, each output
pattern is a random pattern of m O's and l's, the probability of a 1 being
q. The entries in the matrix are also O's and l's, and are initially all O's.
Whenever a pattern pair is stored, matrix elements are set to 1 (i.e., are "ac-
tivated") if there are l's in the corresponding input and output lines (i.e.,
the lines are "active"). In all there are z input-output pairs to be stored.

The retrieval process is governed by a threshold parameter A. If a previ-
ously stored input pattern is presented to the matrix, the retrieved output
pattern will by definition have l's on the output lines that are connected
by the matrix to a number of active input lines that exceeds the threshold.
Under restrictions on the parameters p, q, and z that ensure that the mean
density of connections is less than unity, the threshold A may be chosen
so that one gets a good lower bound for the probability that the retrieved
pattern equals the originally stored pattern. That is to say, the model pa-
rameters can be chosen so that there is minimal interference between the
stored pairs of patterns.

This model may have biological interest as a model for associative mem-
ory, for instance in the hippocampus. Similar robust models may be impor-
tant for neural computing.

2.2 Evaluation of neural networks

The question considered is that of reliable evaluation of a neural network.
We investigate when the behavior of a neural network in a limited number

3



of random trials gives average results that are representative of the average
results for infinitely many trials [2].

A feed-forward neural net architecture defines a class of functions F (say
from Rd to R) for 0 in some parameter set (of weights). We consider n ran-
dom inputs X, for i = 1,..., n, taken independently from some probability
distribution. The weak law of large numbers gives for each 0 a bound on the
probability of the event that the sample average differs from the expectation
by e> 0.

The research gives a bound on the probability that there exists a 0 such
that this happens. This is a uniform large deviation result that is consider-
ably more subtle.

One situation where this is important is when the parameter values 0
are random, perhaps depending on the Xl,...,X,. In that case the long
range expectation should be computed by taking an independent copy X of
X and computing the conditional expectation of Fe(X) given X 1,..., Xn.
The preceding result then gives the same bound on the probability that the
sample average with the random parameter differs from the expectation by
e. Thus if a certain laboriously acquired sample is used for the learning trials
that define the network, then the same sample may be used for later trials
that evaluate its performance.

Such a measurement of performance is relevant to classification problems
in which there is more than one probability distribution. The network is
intended to distinguish between these distributions. It performs well in the
long run if the expectations for the distributions are far apart. The result
says that taking moderate size samples from each of the distributions gives
a good idea of the corresponding expectations.

The application is to a feed-forward neural network specifying such a
function. In the usual terminology of neural networks there is an input layer,
a hidden layer, and an output layer. Associated with the layers are d input
nodes, N hidden nodes, and one output node. The same non-linear threshold
function 0 from R to R is associated with each hidden node. It is customary
to take it to be continuous and increasing from 0 to 1.The threshold function
is fixed in advance. One conventional choice is 0(u) = 1/(1 + e-u). Often
there is also a threshold function associated with output nodes. Since this
merely amounts to a change of variable, we omit this complication.

The network is specified during the learning process by assigning connec-
tion weights. For each hidden layer node i there is a scalar a, representing a
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bias weight and a vector bi in Rd corresponding to the weights coming from
the input nodes. Also for each hidden layer node i there is a scalar ci rep-
resenting the weight going to the output node. We specify the network in a
compact way by giving the vector a of biases, the matrix B of input weights,
and the vector c of output weights. (The output weights are bounded by a
fixed constant.) These quantities constitute the parameter space.

The reason for this choice of architecture is the observation that it is
sufficient for synthesizing arbitrary functions. That is, a network of this
type with sufficiently many intermediate nodes is able to approximate most
functions rather well.

The uniform large deviation result applies to this sort of neural network.
The probability estimate involves a certain polynomial Pd of degree d. (For
example pin(m) = 21n and p2 (m) = M2 - m + 2.) The statement is about a
sample X 1 , . .. , X,, of independent and identically distributed random vectors
in Rd. It says that for every c > 0 there exists c' > 0 such that for large n
the probability that there exists a, B, c such that the sample average differs
from the expectation by more than e is bounded by 4pd(2n) exp(-(C')2n/8).
The important point is that as n - oo the exponential goes to zero faster
than the polynomial goes to infinity. The probability of a large deviation is
thus very small.

2.3 Neural network loss functions

The work on reliable evaluation was extended to encompass a global measure
of loss [3].

A neural network is a system that is supposed to perform its function
by learning from experience rather than being programmed by an algorithm.
The class of network architectures that we consider is representative. In
considering this class we fix a smooth non-linear threshold function € from
R to R. We next choose integers d and N, corresponding to the number of
input nodes and the number of hidden nodes. There is a single output node.
These choices define the architecture.

The network is then specified by parameters called connection weights.
These are a vector a in Rd of biases, an N by d matrix B of input weights,
and a vector c in RN of output weights. We write 0 = (a, B, c) for an element
of the parameter space.

Let ON be the function from RN to RN defined by pointwise evaluation.
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The network is then the function from Rd to R given by Fe(x) = c. 4N(Bx +
a). The picture is that the transformation from the input nodes to the the
hidden nodes is linear, but then there is a thresholding operation at each
hidden node. The transformation to the output node is again linear.

Assume that the input to the network is a random vector X in Rd. A the-
oretical measure of the performance of a particular network in approximating
a function f is the expectation

L(O) = E[(f(X) - Fe(X))2]. (1)

When this is small the performance is good. Let Xl,..., X,, be independent
random vectors. The corresponding empirical measure of performance is the
random variable

L,(O) = n -(f(Xk) - F(Xk))2 . (2)
k=1I

The weak law of large numbers says that for each 0 and for each c > 0 the
probability P [IL(O) - L(O)I > E] --* 0 as n --+ oo. In many situations there if,
also a large deviation bound that says that the probability approaches zero
exponentially as n --+ oo. Our purpose is to present a large deviation bound
that is uniform in 0. That is, we show that

P[30 IL,(o) - L(0)I > El -- 0 (3)

as n -* c and that the probability approaches zero exponentially as n --+ 00.

Furthermore the bounds on the probability are given explicitly in terms of
the network architecture.

This result says that for a large sample it is improbable that there exists
a network for which the empirical measure of performance is misleading.

2.4 A self-organizing process

The work on "Stability of a self-organizing process" [41 treats the stability of
the Markov chain involved in the self-organizing feature maps of Kohonen.
These maps are determined by the effect of a random environment. The
values of these maps learn to imitate the environment while also attempting
to preserve the neighborhood topology. We give conditions under which
two initial states approach each other exponentially fast for all time with
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probability one. Thus the initial state does not matter; the environment
determines future history.

One way of constructing a Markov chain is as follows. Consider a state
space and a sequence F1,..., F,..... of independent random functions from
the state space to itself. Take an initial point X. The random orbit defined
by the iterations X,, = F,,... F1X is the Markov chain.

The self-organizing feature map is constructed in this way. Consider a
finite subset A of the integer lattice Zd with I points. The state space is the
set of all functions X from A to RN.

Fix a probability measure y on RN and a shrinking parameter a with
0 < a < 1. Also fix an integer range parameter r > 0. The random functions
F, are defined as follows. For each n choose an independent point w in RN
from the probability distribution p. Then choose the i in A that minimizes
the distance IX(i)-wI. Consider the neighborhood of i consisting of all j in A
with i-j < r. Then FX is the new state where FX(j) = aw+(1-a)X(j)
for all j in this neighborhood and the other values are unchanged.

One usually takes A to be e points constituting a rectangular subset of Zd.

For mathematical investigations it is convenient to take p to be the uniform
measure on a product of N intervals.

The main parameters for the feature map are the integers d and N, rep-
resenting the dimensions for domain and range, and the range r of the in-
teraction in the domain The number of points i in the domain is another
parameter, and finally there is the shrinking parameter a.

Most often d = N; however sometimes it is interesting to take more
general d < N.

The case of zero range r = 0 is a self-organizing clustering process. In this
case A plays the role of a structureless index set. However in the case r = 1 of
nearest-neighbor interaction the process attempts to preserve topology, and
so might be called topological clustering.

One picturesque interpartion of the case d = N = 2 is when A is thought
of as a set of cells in the cortex and the region in R 2 is thought of as the
retina. The map X from the cortex to the retina develops in such a way that
the points in the retina fall in areas of the retina with extensive stimulation,
while at the same time nearby cells in the cortex tend to be connected to
nearby points in the retina.

We consider the stability question, formulated as follows. Take a > 0.
Take two initial states X and Y and look at their orbits under the same
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random sequence of functions. The question is whether when the initial X
and Y are sufficiently close there is a non-zero probability that they stay
close for all future time.

If X and Y are close, then the i that makes X(i) closest to w may also
be the i that makes Y(i) closest to ,;. In that case, X(i) - Y(i) is replaced
by (1 - c,)(X(i) - Y(i)). Thus the two points have been shrunk together.
The question is whether this shrinking can persist for all future time.

The ergodic behavior has been studied rigorously in a fundamental paper
by Cottrell and Fort. They treat the one-dimensional case d = 1 and N = I
with nearest neighbor interaction (range r = 1). One interesting feature of
this case is that it makes sense to say that a map X is increasing or decreas-
ing. Cottrell and Fort prove that the map is eventually either increasing or
decreasing. Once it has reached one or the other status it remains that way.
Furthermore for maps of either status they prove convergence to a stationary
distribution. (The higher dimensional case has been studied by Ritter and
Schulten. Much of their work uses a diffusion approximation.) We prove
stability for the one-dimensional case studied by Cottrell and Fort. We also
obtain partial results on the higher dimensional case.

2.5 A neural oscillator

One component of the research is modelling of parts of the nervous system in
various invertebrates [5]. This has involved the creation of a computer model
that can accommodate biologically realistic parameters and a wide variety
of neural connections. Members of the experimental group in Neuroscience
have been helpful in this enterprise. Brian Smith and Tom Christensen have
made suggestions about modelling parts of the insect olfactory system, and
Ed Arbas has provided data on the leech heartbeat timing mechanism. One
result of the latter contact has been research on neural oscillators. The
experimental background is contained in work of Ronald L. Calabrese, James
D. Angstadt, Edmund A. Arbas, "A neural oscillator based on reciprocal
inhibition," in Perspectives in Neural Systems and Behavior, T. J. Carew
and D. Kelley (eds.), Alan R. Liss, Inc., N.Y., 1989. The system studied in
these experiments was the subject of a preliminary computer analysis. This
led to work that gave a better theoretical understanding of the system.

In thn simplest version, the oscillator consists of two neurons, numbered
1 and 2. One can make the idealization that the oscillator is described by
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four variables, the two membrane voltages v, and v2 and two conductances
g1 and g2. The system is described by four differential equations for the
four variables. The equations for the two voltages vi and two excitatory
conductances gi are

dvr
c- = (E- - vjs(v,.) + (E+ - v,)g,

and
Sdg = r(vi) - gi.

Here i ranges from I to 2 and labels one neuron, while i" = 3 - i labels the
other neuron. The voltage equations are the current conservation equations
for a circuit with two parallel channels. The parameter c > 0 is the capaci-
tance. The parameters E_ and E+ are voltages induced in the two channels
by ionic diffusion. One takes E_ < E+ and refers to these as inhibitory
and excitatory channels. The conductance s(vi.) in the inhibitory channel
is given by a positive increasing function s of the voltage vi. in the other
neuron. (Thus a high voltage in one neuron increases the conductance in
the inhibitory channel in the other neuron; the two neurons are mutually in-
hibitory.) The conductance in the excitatory channel is given by the variable
g,. The equations for the excitatory conductances involve L time constant
r > 0 that governs the rate of their approach to equilibrium. The equi-
librium conductance r(vi) is a positive decreasing function r of the voltage
vi in the same neuron. One wishes to compare the solution of the system
of four differential equations with the discontinuous solutions of systems of
two differential equations. There are two such systems, one defining "slow
motion" (in voltage equilibrium) and one defining a "fast motion" (between
voltage equilibria). One leaves the slow motion at a "junction point" where
the motion cannot continue in voltage equilibrium. Then a fast motion moves
the system very rapidly to a "drop point," where the voltage equilibrium is
resumed.
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3 Network Connectivity

3.1 The trapping transition: communication block-
age in a random network

This project, which was carried out by graduate student M. Pokorny in col-
laboration with Newman and with D. Meiron of Caltech, is primarily perco-
lation theoretic and involves computer simulations of two-dimensional ran-
domly connected bond networks [6]. Let us describe the basic phenomenon
under investigat' -n v ing neural network terminology.

Suppose all active synapses are short range (say nearest neighbor), but
only a fraction p of all possible short range synapses are actually active. Sup-
pose further that p is above the percolation threshold Pc, so that long range
communication is possible through the infinite cluster of active synapses.
Assume that all active synapses in this infinite cluster (but none of those in
finite clusters) are suddenly destroyed (e.g. by a massive "seizure" or invasion
by a virus which can only be transmitted through the currently active synap-
tic connections). We ask whether global communication can be restored to
the system by activating the currently inactive synapses and utilizing them
together with the currently active synapses (which belonged to finite clusters
and hence were not destroyed by the seizure/invasion).

It is quite clear that if p < 1 - Pc, then the answer to the above question
is yes, since then the inactive synapses by themselves percolate. The answer
should continue to be yes past 1 - p, until a new critical value k, is reached;
beyond k,, communication from the origin through undestroyed synapses is
blocked or trapped by the destroyed synapses. Let us call the set of sites
that can be communicated with from the origin in this situation its "trap."
In our simulations we investigated the value of this trapping critical point
kc, and more significantly the issue of whether the trapping phase transition
is in the same "universality class" as the conventional percolation transition
at Pc. The work was motivated by earlier work on the related issue of "inva-
sion percolation" by Willemsen and Wilkinson and by J. and L. Chayes and
Newman.

Our numerical results for two dimensions are as follows. The value of
k, is estimated as about 0.520, which is indeed above 1 - pc (which here is
exactly equal to 0.5). The critical exponents were studied by estimating the
mean trap size for p above k, ard then using finite size scaling procedures.
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The conclusion is that the critical exponents are completely consistent with
those occurring in the ordinary percolation phase transition. Thus there
does not appear to be a new universality class involved (disagreeing with
earlier claims of Willemsen and Wilkinson). L. Kadanoff has noted that this
negative result may be of more than passing interest, since it was thought that
invasion percolation, being a dynamical model, was capable of generating
critical phenomena not obtainable by static percolation models.

3.2 Markov fields on branching planes: the connec-
tivity transition in a layered network

This project, which is part of graduate student C. Wu's thesis research,
involves a mixture of percolation and Ising theoretic techniques in the anal-
ysis of the connectivity properties of layered networks [7]. The type of net-
work studied is a stack of tree-like graphs (Bethe lattices) which, in addition
to their "horizontal" tree graph edges also have "vertical" nearest neighbor
edges between the individual layers of the stack. The edges may be thought
of as potential synaptic connections.

In the percolation version of the model, only a fraction p of the horizontal
synapses and a fraction v of the vertical synapses are active. G. Grimmett
and Newman studied the global connectivity properties of the system as these
two parameters vary and discovered a pair of transitions: first from local
connectivity to large scale connectivity that is concentrated within layers,
and then to diffuse large scale connectivity (i.e., in which the original layered
nature of the model is not mirrored by the connectivity pathways).

In the continuation of this work by Newman and Wu, it has been shown
that this double transition persists for Ising (2-state neuron) and Potts
(multi-state neuron) models on such a layered network, as a pair of coupling
parameters are varied.

3.3 Ising models and dependent percolation

The relation between ferromagnetic (excitatory) Ising systems and percola-
tion models has been very fruitful, as in the work of [7]. For systems with
both inhibitory and excitatory synapses, the relation to percolation is more
complicated. In [8], Newman reviews this relation and treats some extra
issues that arise for multi-state neurons (Potts models).
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3.4 Topics in percolation

This review article article [9] covers recent work in percolation including that
of [6, 7, 8].

4 Computer Networks and Computer Per-
formance Analysis

The research supported by this contract has included a substantial compo-
nent on the performance analysis of stochastically modelled computer net-
works, and of computer systems in general [10, 11, 12, 13, 14]. Robert Maier
has investigated a number of resource contention models both theoretically
and numerically. Simulations have been performed on a Connection Machine
located at the head offices of Thinking Machines in Cambridge. The Con-
nection Machine was made available under a DARPA grant, and accessed via
the national Internet.

The probabilistic models investigated were all models of complex systems:
systems comprising many loosely cooperating agents, the overall behavior of
which is not easily predictable. The prototypical example is a network of
computers, which compete for access to a single communication channel.
Another is a system in which agents compete for a divisible (rather than
discrete) resource, such as computer memory. In both cases competition can
get out of hand: the resource may be exhausted, or be poorly apportioned.
The mathematical study of such phenomena requires estimates on the first
passage times of Markov processes, and large deviation theory is a major
tool.

The following subsections review the models investigated, and summarize
the papers completed and in preparation.

4.1 Network instabilities

Random access broadcast channels are frequently employed in packet-switched
data communication networks. They have two defining characteristics:

* A single logical bus over which most data moves. Data transmissions
are usually received by all nodes on the network, and overlapping trans-
missions can interfere with one another.
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9 A comparative absence of control signalling, whether out-of-band or
in-band. Nodes transmit randomly and more or less independently,
according to some protocol.

Since the nodes are independent, in the event of packet collisions they must
implement their own retransmission strategies. They must buffer blocked or
unsuccessfully transmitted packets and attempt to retransmit them later.

Many protocols for controlling random access broadcast channels are un-
stable: under conditions of heavy load the packet collision rate may sud-
denly rise to an unacceptable level. But determining theoretically whether
any given random-access protocol is unstable is a vexing problem. Such pro-
tocols as CSMA/CD [Carrier Sense Multiple Access/Collision Detect] have
been repeatedly studied, both analytically and numerically, but the results
of the studies have been of limited practical applicability. This is in part be-
cause much work has concentrated on infinite-user models: network models
in which the total rate of packet arrivals is finite, but the number of network
nodes is infinite.

Several authors, beginning with Kleinrock and Lam, have explored the
way in which such instabilities appear in stochastically modelled networks
as N, the number of nodes, tends to infinity. Studies of large-N networks
have revealed why heavily loaded networks become unstable: the associated
Markov chain exhibits two points of stable equilibrium. One corresponds
to a desirable high-throughput, low-contention state, and the other to an
undesirable low-throughput, high-contention state. The sudden degradation
in network performance corresponds to a transition from the former to the
latter.

Robert Maier's research [10] evaluated the performance of computer net-
works in the large-N limit, but a large-N limit different from that used in the
conventional infinite-user model. As N - oo, the packet retransmission rates
on each individual node, as well as the packet arrival rates, were taken pro-
portional to N - 1 . This choice of scaling allowed the use of Ventcel-Freidlin
theory, the theory of the large deviations (i.e., leading-order fluctuations) of
Markov chains. If the time until performance degradation is denoted r, then
according to the theory its expectation has leading-order asymptotics

E{r} - CNaeNso, N .--+ oo

in which So can in principle be computed exactly.
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The Ventcel-Freidlin formalism was applied to two random access sys-
tems: a time-slotted ALOHANET model, and an unslotted persistent CSMA/CD
model. In both cases So was computed. The retransmission protocol used in
the latter model closely resembled that used by Ethernet, so the computation
of S0 is relevant to the stability of real-world computer networks.

4.2 Local contention models

The network models reviewed in the last subsection exhibited a compara-
tively simple contention for resources. There was only a single resour'e" the
network bus. All agents competed for it, and competition was global.

Robert Maier is now investigating, both theoretically and by means of
simulations, a more realistic model of local contention [11]. Consider a Eu-
clidean or hypercubic grid of processors, each equipped with its own local
memory. Suppose that each processor is running its own program, and that
there is rninimal interprocessor communication. Any given processor may,
however, from time to time require more memory than it has available. It
may attempt to access, and use, the memory resources of its nearest neigh-
bors.

This sort of contention for resources is purely local, and the resources are
as distributed as the agents. But the simplest scheme for resolving collisions
is the same as in the global case: 'colliding' nodes (those that wish to use
the same memory at the same time) resolve the deadlock by backing off a
random amount of time and trying again. Such a random-access protocol can
be quite efficient. But under conditions of heavy load, i.e., frequent requests
for adjacent memory, it may give rise to bistability. As in the global case,
collisions and retries may escalate suddenly to an unacceptable level.

The methods of Ventcel and Freidlin are not appropriate to this problem;
although it can be thought of as a Markov chain problem, the dimensionality
of the state space is very large. In fact it must be approached largely through
simulations. Simulations are being conducted on the Connection Machine at
Thinking Machines' offices in Cambridge. The Connection Machine is being
accessed vid the NSFNET, and Sun and other workstations at the University
of Arizona are being used as front ends.
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4.3 Memory exhaustion

Another problem investigated by Robert Maier was that of memory exhaus-
tion in a system with only two competing agents [12). The problem con-
sidered was that of two stacks evolving in a bounded region. This is one
of the simplest problems in the area of dynamic data structures, but a full
analysis requires surprisingly deep mathematics. It was originally proposed
by Knuth, and was investigated further by Flajolet and Louchard. Ventcel-
Freidlin theory, it turns out, allows the treatment of the case in which the
mobility of the stacks is allowed to vary with height.

The basic questions are as follows. Suppose one allocates a contiguous
block of m cells of memory, and allows two stacks to evolve (i.e., randomly
grow and shrink) within it. The two stacks begin on opposite sides of the
block; one grows upward and the other downward. How long will it be
before they collide? And at the time of collision, what will their sizes be? It
is asymptotic estimates, valid as m -- oo, that are desired.

The time to collision and the final stack sizes are of course random vari-
ables. Their distributions will depend on the probabilities assigned to the
possible evolutionary histories of the stack system. Knuth suggested that at
each time step, there should be probability p of each stack increasing by one
in size, and probability 1/2 - p of each stack's height decreasing. This choice
defines a Markov chain on the space of states of the two-stack system, which
is parametrized by the two stack heights.

The initial state of the system is (0, 0), and the set of final states F is

{(j, k) E Q. I j + k = m}.

In terms of the Markov chain, the basic questions are

* How many operations take place before a state in F is reached?

* Which state will it be?

The answers are probabilistic, and depend markedly on p.
The p < 1/4 case is the most realistic, and the hardest to analyse. With

this choice of p the stacks will be biased toward contraction, and the mean
time to collision will grow exponentially rather than polynomially in m. Fla-
jolet made an interesting discovery: in this case, the limiting distribution
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on F is uniform. That is to say, if m is large and the stacks are biased to-
ward contraction, when the stacks finally collide they are as likely to be large
as small. This has obvious implications for the design of algorithms. In par-
ticular it would seem to indicate that the shared storage method considered
here, with the stacks sharing a block of size m, is usually far more efficient
than a separate arrangement, with the stacks confined to their own regions
of size m/2. The latter scheme would run out of memory much earlier.

Robert Maier showed that the uniform distribution over F is an artifact,
attributable to Knuth's choice of random process. Traditionally the behavior
of the two stacks is assumed to be independent of their size: p, the probability
of an insertion into either stack, is independent of state. It is reasonable to
allow more general behavior: the probability of insertions into and deletions
from each stack could depend on the height of the stack as a fraction of m.
In particular one can let the insertion probability be (1 - g(x))/4, and the
deletion probability be (1 + g(x))/4, in which x is the height of the stack,
as a fraction of available memory, and g(-) > 0 is some sufficiently smooth
function defined on [0, 1]. g(x) measures the extent to which deletions from
a stack predominate over insertions.

If g is not constant, the limiting distribution on F will not be uniform.
Two possibilities deserve mention: either the limiting distribution will be
localised at (m/2, m/2), or it will be concentrated at (0, m) and (m, 0). The
former occurs if g' > 0, in which case the stacks become more biased toward
contracting as they grow. It also occurs if g(0) = 0, in which case the
bias toward contraction disappears at low stack height. The latter typically
obtains if g' < 0.

Besides the limiting distribution on F, the distribution of r, the number
of operations that take place before F is reached, was studied. In the case
of constant p < 1/4, which corresponds to constant g(.), Flajolet proved
combinatorially that its distribution is asymptotic to that of an exponential
random variable, with mean roughly O(((! - p)/p)m). It was shown that
this phenomenon occurs very generally: for any sufficiently smooth g(.) > 0,
there are constants CO, a and So such that r/Come-so is asymptotically
exponential with unit mean. Explicit formula for Co, a and So in terms
of g(.) were derived.
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4.4 Weighted evolutions of data structures

Robert Maier's research included some other work on stochastically modelled
data structures. The emphasis was on the asymptotics of the cost of a se-
quence of operations on a data structure, rather than on the appearance of
instabilities or other undesirable behavior. The same Ventcel-Freidlin theory
proved useful, however.

A number of authors had previously derived asymptotic expressions for
the average cost of n operations on such data structures as priority queues
and dictionaries. The expressions depended on (1) the implementation of the
data structure, and (2) the probability measure over random sequences of op-
erations (insertion, deletion, and queries of various sorts) used in computing
the average.

In the present investigation [13] an equiprobability of histories was as-
sumed: all possible sequences of alterations of the data structure were taken
as equiprobable. This included alterations consequent on the insertion'of a
datum, on the deletion of a datum, and on accessing the structure to query
it or to alter a datum in some way without removing it. The cases of list and
d-heap implementations of priority queues were treated, and the case of list
implementations of linear lists and dictionaries. In the case of dictionaries,
an arbitrary number of query types were allowed.

In this framework, results on list implementations had been obtained pre-
viously by the combinatoric techniques of Flajolet and the more probabilistic
method of Louchard. The present treatment extended theirs by covering heap
implementations as well as lists. Much more importantly, it brought to bear
the powerful formalism of path integration. This formalism originated in
physics, and can be viewed as a user-friendly form of Ventcel-Freidlin theory.

The path integral formalism makes possible a very general analysis of
equiprobable structure histories: so long as the structure implementations are
of the simple list or heap form, the allowed operations can be considerably
more sophisticated than mere insertions or deletions. The assumption of
strict equiprobability of histories is also unnecessary: one can easily treat
models in which histories are differently weighted, with certain operations
taken as more likely than others. Such models are particularly difficult to
handle combinatorially.

The applicability of the path integral method is not so much restricted
by the choice of datatype as by the choice of implementation. In general
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this method, with its assumption of a comparatively small state space, (an
be used to treat implementations that "uniquely represent their data." Such
implicit implementations allow at most one representation, up to order iso-
morphism, for any quantity of internally stored data.

It was shown that for such implementations the asymptotic determinism
found by Louchard occurs very generally: in the limit of long histories, the
most likely evolutions of the data structure are those that cluster tightly
around a deterministic path. In consequence the integrated space and time
costs, when normalized, converge as n --- oo to deterministic values. In the
case of list implementations the limiting costs are quadratic in n, so that
expected costs increase in the limit as fast as worst-case costs. But for heaps
the expected costs turn out to increase rather less rapidly: the integrated
space cost as n 2/VIl-gn, and the integrated time as n log n. In expectation
the spatial cost differs markedly from its worst-case value, which is quadratic
in n.

This unusual phenomenon - the clustering of integrated costs around
deterministic values - probably does not occur in real-world databases. Its
failure to appear is a sign that in the real world, data structure histories are
far from being equiprobable.

4.5 Stochastic orderings and mean extremes

An additional topic investigated by Robert Maier is more theoretical, but
has applications to queueing theory and computer performance analysis. In
collaboration with Peter Downey of the University of Arizona, he has investi-
gated the relationship between stochastic orderings of random variables and
the growth rate of their mean extremes[14].

Consider n independent copies of a non-negative random variable X. De-
note by X(,,) the maximum of these copies. It is a random variable itself, and
is called the maximum order statistic, or the extreme of the n-element sam-
ple. If X is unbounded above, then as n -- oc the mean extreme E{X(n)}
will also tend to infinity. Its growth rate is of interest.

If X is an exponential random variable, it is easy to check that E{X(,)}
grows logarithmically in n. Maier and Downey showed that it grows no faster
than logarithmically if and only if X is suitably bounded by an exponential:
in particular, if and only if it is stochastically dominated by an exponential
variate.
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This result is really only a special case of a new result on stochastic
orderings. One of these orderings is variability order. Variability ordering
is a partial order on non-negative random variables; one says that X<_Y,
or that X is less variable than Y, if E{h(X)} < E{h(Y)} for all increasing
convex functions h: R+ -. R+. Another ordering on non-negative random
variables is the mean extreme ordering, defined as follows: X<oY means
that the mean extremes of X are all less than or equal to the corresponding
mean extremes of Y.

Maier and Downey showed that the orderings <, and <, are very closely
related: X<CY implies X<_Y, and X<OY implies X<cCY for some univer-
sal constant C. So X is bounded in variability ordering by Y if and only if
its mean extremes grow no more rapidly, as n --+ 00, than those of Y. But it
is easy to show that X is bounded in variability ordering by an exponential
variate Y if and only if X is stochastically dominated by Y. So the above
result follows.

4.6 Phase-type distributions
This work [15] contains an algorithm that constructs, from a given ratio-
nal function, a Markov chain whose absorption-time distribution has the
rational function as generating function. This provides an algebraic proof
of C. O'Cinneide's recent characterization of discrete phase-type distribu-
tions. The algorithm is based on an automata-theoretic algorithm due to M.
Soittola.

Moreover the characterization of continuous phase-type distributions fol-
lows from the discrete characterization. In conjunction with the discrete-time
algorithm, this engenders an algorithm for constructing a Markov process
representation for any distribution of continuous phase-type. This work suc-
ceeded in tying together the theory of Markov chains with absorption and
the theory of finite automata.

19



5 Bibliography

References

[1] William G. Faris and Robert S. Maier, "Associated random variables
and reliability of neural networks," J. Neural Network Computing, to
appear.

[2] Robert M. Burton and William G. Faris, "Reliable evaluation of neural
networks," Neural Networks, to appear

[3] Robert M. Burton and William G. Faris, "Large deviations for neural
network loss functions," preprint in preparation.

[4] Robert M. Burton and William G. Faris, "Stability of a self-organizing
process," Abstracts American Mathematical Society 11 (1990), 462,
preprint in preparation.

[5] William G. Faris, "Singular perturbation analysis of a neural oscilla-
tor," preprint in preparation.

[6] Martin Pokorny, Charles M. Newman, and Daniel Meiron, "The trap-
ping transition in dynamic (invasion) and static percolation," J. Physics
A: Math. Gen. 23 (1990), 1431-1438.

[7] Charles M. Newman and Chuntao C. Wu, "Markov fields on branching
planes," Probability Theory and Related Fields, to appear.

[8] Charles M. Newman, "Ising models and dependent percolation," in
Topics in Statistical Dependence (H. W. Block, A. R. Sampson, and
T. H. Savits, eds.), IMS Lecture Notes-Monograph Series, to appear.

[91 Charles M. Newman, "Topics in percolation," in Proceedings of the
1989 Summer Seminar on Mathematics of Random Media (W. Kohler
and B. White, eds.), Lectures in Applied Mathematics, American
Mathematical Society, to appear.

[10] Robert S. Maier, "The first exit times of multiaccess broadcast chan-
nels," preprint.

20



[11] Robert S. Maier, "Local resource contention: A performance analysis,"
preprint in preparation.

[12] Robert S. Maier, "Colliding stacks: A large deviations approach,"
preprint.

[13] Robert S. Maier, "A path integral approach to data structure evolu-
tion," preprint.

[14] Peter J. Downey and Robert S. Maier, "Stochastic orderings and ex-
treme moment growth," preprint.

[15] Robert S. Maier, "Algebraic construction of phase-type distributions,"
preprint.

21


